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> The past: active solicitation (i.e., travel surveys)

– Low sample sizes

– Mixed reporting accuracy

– Demographic info available

> The present (and future): passively-generated mobile data

– Massive sample sizes

– Found “in the wild”; data points are not generated due to 

any research-related processes

– Prevalence of sparsity (large chunks of missing 

    data)

Motivation
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> Two pervasive issues: 
– As data collection practices become more transparent and 

user-centric, the sparsity issue only gets worse (DeGiulio 
et al., 2021)

– Researchers are not able to share individual mobile data 
used in their studies due to privacy agreements with data 
providers (Gao et al., 2019; Rao et al., 2018; Sun et al., 
2021; Li et al., 2023)

> The above motivates:
1. An imputation method to correct missing data in GPS 

traces at various levels (Ugurel et al., under review)

2. A generative modeling framework for individual mobile 
data to create synthetic datasets replicating real 

       travel behavior (Ugurel, E., Huang, S., Chen, C., 
 under review)

Motivation
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> Mode changes
– Can occur intra- or inter-trip

> Heterogeneous human mobility behavior 
– Varying tendencies to explore and exploit

Challenges

Any method to correct missingness need to be flexible enough 
to capture these individual-level complexities
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Spectus Dataset

Observations per user per day

Mean 135

Standard Deviation 162

Min 1

25% 40

50% 98

75% 181

Max 9,159

(left) Heat map of a random sample of 20,000 GPS traces in the Greater Seattle Area; 

(right) summary GPS trace count statistics of the entire sample of 2,000 users
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> To what extent is a multi-task, multi-kernel learning 

framework a suitable method for correcting 

missingness in mobile data?

> How do we generate synthetic mobile data that 

replicates real individuals’ travel behavior?

Research Question
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The basic form of our location learning problem is

where 𝑓 specifies a systematic function of exogenous variables 𝐗 and 𝜺 is 
Gaussian white noise. We represent 𝒚 through latitudes 𝜙 and longitudes 𝜆

where 𝑦𝑖,𝑡 is the output for the tth task on the ith observation. 

Given two correlated tasks, the covariance structure for the output vector 
can be specified as

where 𝐊𝑓 is a PSD matrix containing the inter-task 

covariance and 𝑘 is any valid PSD kernel.

Multi-task Gaussian Process
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An inferred location 𝑦∗ of a new input vector 𝐱∗ conditioned on the training 
data is then assumed to be distributed as follows

where ⊗ denotes the Kronecker product, 𝑘𝑡
𝑓
 selects the tth column of 𝐊𝑓 , 

𝑘∗ = 𝑘(𝑥∗, 𝐗) is the vector of covariance between the test point and the 
training set, and 𝑘∗∗ = 𝑘 𝑥∗, 𝑥∗ . 

Finally, we minimize the negative marginal log-likelihood in determining the 
optimal model hyperparameters Θ

Multi-task Gaussian Process
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> Squared Exponential (SE)

 𝐾𝑆𝐸(𝐱 − 𝐱′) = 𝜎2exp −
1

2ℓ2
𝐱 − 𝐱′ 𝟐

> Periodic (PER)

𝐾𝑃𝐸𝑅(𝐱 − 𝐱′) = 𝜎2exp −
2sin2(𝜋 𝐱 − 𝐱′ /𝑝)

ℓ2

> Rational Quadratic (RQ)

𝐾𝑅𝑄 𝐱, 𝐱′ = 𝜎2 1 +
𝐱 − 𝐱′ 2

2𝛼ℓ2

−𝛼

Kernels for Modeling Mobile Data

Where ℓ is a lengthscale (smoothing) parameter, 𝜎2 is the 
output variance, 𝑝 is the period length, and 𝛼 is the scale 
mixture (i.e., the relative weight of large- and small-scale 
variances)
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Kernels for Modeling Mobile Data

𝐾𝑆𝐸 × 𝐾𝑃𝐸𝑅

𝐾𝑆𝐸 × 𝐾𝑅𝑄
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Initialize the allowed set 
of base kernels 𝐵 and 
the number of MKL 
branches 𝑀

L E V E L  0

For each 𝐵𝑖  in 𝐾:
 Maximize MLL 

Calculate BIC
End for.

L E V E L  1

Choose 𝑘𝑖  that has the 
smallest BIC as the 

current kernel 𝑘𝑐𝑢𝑟𝑟

Initialize the set of 
algebraic operations

𝐴 = [+,×]

For each 𝑘𝑖  in 𝐵:
 𝑘𝑖 = 𝑘𝑐𝑢𝑟𝑟 + 𝑘𝑖

 𝑘𝑖 = 𝑘𝑐𝑢𝑟𝑟 × 𝑘𝑖

 𝜂𝑛 =
1

𝑁

 Maximize MLL
 Calculate BIC
End for.

𝑘𝑐𝑢𝑟𝑟  = 𝑘𝑖  which has the 
lowest BIC 

L E V E L  M

…

For each 𝑘𝑖  in 𝐵:
 𝑘𝑖 = 𝑘𝑐𝑢𝑟𝑟 + 𝑘𝑖

 𝑘𝑖 = 𝑘𝑐𝑢𝑟𝑟 × 𝑘𝑖

 𝜂𝑛 =
1

𝑁

 Maximize MLL
 Calculate BIC
End for.

𝑘𝑐𝑢𝑟𝑟  = 𝑘𝑖  which has the 
lowest BIC 

Initialize kernel weight 
constraints:

𝜂𝑛 ≥ 0

෍
𝑛=1

𝑁

𝜂 = 1

Where 𝑁 is the number of 
kernel components

Greedy Multiple Kernel Learning
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> Physical variables (i.e., instantaneous velocity, direction of travel) are 
functions of the transportation network

– Speed limits, street widths, and traffic dictate how fast one can go in 
any given segment

– Bodies of water or the existence of pavement dictate which 
direction one can travel at a given location

Physics-regularized GP
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We define functional constraints that reflect the limitations of human 
mobility within the given spatial and temporal context

However, functional constraints are hard to enforce within GPs. Instead, we 
enforce it on a set of constraint points 

The Constrained Optimization Problem
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> GPyTorch (Gardner et al., 2018)
– Reduces the computational burden of exact GPs to O(n2). 

> Uses a modified batched version of linear conjugate gradients

> Nonlinear optimization
– Adaptive Moment Estimation (Kingma and Ba, 2017)

– Initialization is a prerequisite to avoid model misspecification

Implementation
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https://gpytorch.ai/


Experiments: Model 
Behavior for Different 
Types of Trips



K-means clustering by mobility metrics

Cluster
Avg. Vel. 

[m/s]

Trip 

Distance 

[m]

Trip 

Duration [s]

Heading 

Change 

Rate

Velocity 

Change 

Rate

Number of 

Observatio

ns

Stop Rate

Slow, short trips 9.29 8,088 1,062 0.0019 0.0024 22.79 0.0007

Medium speed, 

medium distance
13.94 29,693 2,362 0.0007 0.0008 49.86 0.0002

Fast, distant trips 17.86 59,299 3,449 0.0005 0.0006 141.8 0.0001

Table 2: Summary of trip clusters
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Experiments: Robustness



We discretize a user’s total available data time 𝒯 into 𝑃 intervals (1, … , 𝑃) of length 𝜏, 

which we refer to as the “temporal resolution.” The choice of 𝜏 is important—it 

decides the sparseness of a user’s observed trajectory, in which each interval is 

assigned an indicator variable

Ι𝑝 = ቊ
1 if 𝑝 has at least one observation
0 otherwise

We thus define temporal occupancy (or the inverse of sparsity) as

𝑞𝜏 =
1

𝑃
෍

𝑝=1

𝑃

I𝑝

Notation
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Mobility Metric Results

We find that the proposed method outperforms the competing 
algorithms in all classes of missingness gaps

Table 3: Median error of mobility metrics across varying gap lengths
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Experiments: Physics-
Regularization



Physics-regularized GP Performance
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> We have proposed a multi-task GP formulation to 
impute missing values in longitudinal mobile data

> By augmenting this model with multiple kernel 
learning and physics regularization, this can be a 
suitable generative modeling framework to generate 
synthetic data

> Future Work
– Reducing computational complexity through approximation 

methods

– Theoretical guarantees of convergence, accuracy bounds

– Augmentation through Collaborative Learning

Conclusion and Future Work
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