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What you will learn today

® Theoretical
® Basics of travel behavior theory

® Sources of and issues with large-scale mobility data (and the collection thereof)
® Introduction to U.S. Census data
® Some mobility models (i.e., assumptions and limitations)

® Practical

® Data structures for mobility data

® Merging with census data

® Measuring and visualizing mobility quantities (volumes, distances, etc.)

® Predicting mobility flows with the Gravity model
Note: Some familiarity with coding / object-oriented programming may be beneficial
but is not necessary to follow this session.
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Overview

1. Travel Behavior: An Introduction
2. Mobility Data

3. Census Data

4. Mobility Models

5. Conclusion

6. Appendix
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Before | start...

Go to this link: https://tinyurl.com/c2smartGit

€ launch binder

And hit this button:
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https://github.com/ekinugurel/C2SMARTER_Mobility_Workshop

Why do we care about travel behavior?

Can help planners/engineers answer questions like:
® Where should we place a new transit station?

How should we tune our signal timing to optimize traffic flow?

How do we ensure equitable access to employment opportunities given the
distribution of work/housing imbalances?

® To what extent can we predict human migration (i.e., moving to a different state for
work, international migration, etc.)?
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Dimensions of Travel Behavior

Who: The trip maker
What: Trip generation

When: Departure choice, arrival time

Where: Trip distribution, traffic assignment

Why: Trip purpose

How: Mode choice
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Influences on Travel Decisions

® Person and household-related attributes

® Socioeconomics and demographics ( ; )
® Attitudes and feelings ( )

® Built environment

® Surrounding origin and destination
® Density, diversity, and design ( )
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The Four-Step Model

Demographic data

i Total number of trips
I 1. Trip generation I =I 2. Trip distribution

Trip start and end points

| 4. Route choice | | 3. Mode choice
Start points, end points,
¢ and distribution by mode
Link flows
Source: ( )
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How do we study travel behavior?

We use mobility data, some sources of which include:

Household travel surveys

Traffic flow counts (i.e., from loop detectors)

Public transit sensors

Call detail records

Traces from GPS-equipped devices < focus for today
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How GPS traces are collected

® Users opt-in to the privacy policies of smartphone apps

Those apps partner with location data aggregators

As apps 'ping’ the opted-in user’s device, GPS data is generated

Some providers also have access to commercial GPS data (i.e., equipped on
long-distance trucks and other commercial vehicles) which tend to be more reliable
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Today’s Data

Aggregate travel volumes between census block groups (CBGs) for the week of
01/04/2021.
® Publically available here: https://github.com/GeoDS/COVID19USFlows
® Aggregated by SafeGraph

Weekly Population Flows between March 2nd and March 8th

12/33


https://github.com/GeoDS/COVID19USFlows

Let’'s get set up on our code!



American Community Survey (ACS)

Conducted every month, every year

Sent to a sample of addresses (about 3.5 million) in the 50 states, District of
Columbia, and Puerto Rico

Asks about topics not on the 2020 Census, such as education, employment, internet
access, and transportation

Methodology is detailed here.
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https://www.census.gov/programs-surveys/acs/methodology.html

Census Geography Hierarchy
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NYC Census Block Groups
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Let’s merge ACS data with aggregated mobility data!
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Taxonomy of Mobility Models

Individual-level Population-level
® Preferential Return ( e Gravity Model ( )
) e DNN-based Models (
® Recency ( ) ; )
® Social-based models ( ® Tensor decomposition-based (
) )
e Other activity-based models (e.g., e Other data-driven models (
check out SoundCast!) )
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https://github.com/psrc/soundcast

The Gravity Model

Draws inspiration from Newton's law of gravitational attraction, positing that the flow
between two locations is:

® Proportional to the "masses” of the origin and destination (typically population size)
® |nversely proportional to the distance between them

It has the general form:

a B
im;

7 (1

m

Tj=K

where Tj; is the flow from origin / to destination j, m; and m; are the populations of the
origin and destination, dj; is the distance between the origin and destination, and K, «a, 3,
and ~ are parameters to be estimated.
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Gravity Model - Parameter Estimation

The parameters «, 3, and ~ are typically estimated from observed flow data. One
common approach is to transform the equation into its logarithmic form:

log( Tjj) = log(K) + alog(m;) + Blog(m;) — v log(dj) (2)

This enables the use of Maximum Likelihood Estimation (MLE) to find optimal parameter
values that best explain observed flows.
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DNN-based Models
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Tensor Decomposition-based
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Model Evaluation

Common Part of Commuters (CPC)

Measures the overlap between predicted and observed flows

min(T,-j, —f-lj)
Zu Tij

where Tj is the predicted flow from zone i to zone j.

cPC = =1

e CPC ranges from 0 to 1
® 1 means perfect prediction (all flows match)
® (0 means no overlap between predicted and observed

® Represents the fraction of correctly predicted trips
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Model Evaluation

Root Mean Square Error (RMSE)

Quantifies the absolute difference between predicted and observed flows

1 N
— - . T..)2
RMSE = |- % (T — T4) (4)

where n is the total number of origin-destination pairs.
® [ ower RMSE == better performance
® Sensitive to large errors due to the squared term

® Same unit as flow data, making interpretation straightforward

Emphasizes absolute errors, which might overemphasize high-flow connections

For mobility data, often calculated on log-transformed flows to reduce the impact of

extreme values
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More Resources

Additional details on LBS data: BigData4Mobility.github.io

Data Science for Mobility (DSM) Summer School organized by Luca Pappalardo —
notebooks here.

UW Geospatial Data Analysis Course (hosted entirely open-source!)
® For a more comprehensive treatment of GeoPandas, check out Modules 3, 4, and 6.

Excellent review of mobility models: Human mobility: Models and applications
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https://bigdata4mobility.github.io/
https://github.com/scikit-mobility/tutorials/tree/07278dc67fea6590b12b20dfec54df48a6916d7f/DSM_summer_school
https://github.com/UW-GDA/jupyterbook
https://www.sciencedirect.com/science/article/pii/S037015731830022X?casa_token=b8NlLghlO4QAAAAA:BmY4q55b9bDfSrsp8bk_eGXxGiAACwH7D691qWilL0Qjmml7pJ37kxjiLnK46KvcgnWkgqf

Our Work

Ugurel, E., Guan, X., Wang, Y., Huang, S., Wang, Q., and Chen, C. Correcting
missingness in passively-generated mobile data with Multi-Task Gaussian Processes.
Transportation Research Part C: Emerging Technologies 161 (Apr. 2024)

Ugurel, E., Huang, S., and Chen, C. Learning to generate synthetic human mobility
data: A physics-regularized Gaussian process approach based on multiple kernel
learning. Transportation Research Part B: Methodological 189 (Nov. 2024), 103064
Ugurel, E., Wu, X., Wang, R., Lee, B. H. Y., and Chen, C. Metropolitan Planning
Organizations' Uses of and Needs for Big Data. Findings (Dec. 2024). Publisher:
Findings Press

Wang, Y., Guan, X., Ugurel, E., Chen, C., Huang, S., and Wang, Q. R. Exploring
biases in travel behavior patterns in big passively generated mobile data from 11 U.S.
cities. Journal of Transport Geography 123 (Feb. 2025), 104108

He, J., Sheera, A., Khullar, M., Chavan, S., Herman, B., Ugurel, E., and Mashhadi,
A. A framework for measuring and benchmarking fairness of generative crowd-flow
models. ACM Journal on Computing and Sustainable Societies (To appear in latest
edition) 26 /33



Connect with me!

® |'m interested in solving long-range transportation planning problems using
large-scale machine learning (ML).

® My personal website is here: https://ekinugurel.github.io/

LinkedlIn: linkedin.com/in/ekin-ugurel

Google Scholar
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https://ekinugurel.github.io/
https://linkedin.com/in/ekin-ugurel
https://scholar.google.com/citations?user=5wpsREAAAAAJ&hl=en&oi=ao

The End

Please take this anonymous feedback survey to help me make this
presentation better

https://tinyurl.com/c2smart
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https://forms.gle/AA1RtUx6NKkTmJhr5
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The Mobility Data Landscape
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https://themarkup.org/privacy/2021/09/30/theres-a-multibillion-dollar-market-for-your-phones-location-data

Issues in GPS-based data collection / use

® Sparsity

® Peaks and valleys of observation frequency ( )

® 'Urban canyons’ & enclosed structures

® 'Cold start problem’
® Privacy

® Sensitive information (e.g., one's home and work locations) is easily inferred from high

granularity GPS data (

® Anonymization and aggregation methods are needed to protect user privacy
® Bias

® Self-selection bias prevents representativeness ( )

® QObserved data may distort real-world patterns
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Stay Point Detection

Activity locations where people stay for a period of time.
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Trajectory Segmentation

A trajectory is split into two or more sub- trajectories, with several techniques:
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