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> The past: active solicitation (i.e., travel surveys)

– Low sample sizes

– Mixed reporting accuracy

– Demographic info available

> The present (and future): passively-generated mobile data

– Massive sample sizes

– Found “in the wild”; data points are not generated due to 

any research-related processes

Motivation
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The Location Data Industry: Collectors, Buyers, 
Sellers, and Aggregators

Source: The Markup

https://themarkup.org/privacy/2021/09/30/theres-a-multibillion-dollar-market-for-your-phones-location-data


> Two pervasive issues: 
– As data collection practices become more transparent and 

user-centric, the sparsity issue only gets worse1

– Researchers are not able to share individual mobile data 
used in their studies due to privacy agreements with data 
providers2, 3, 4, 5

> The above motivate a generative modeling framework 
for individual mobile data to create synthetic datasets 
replicating real travel behavior

Motivation
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> Mode changes
– Can occur intra- or inter-trip

> Heterogeneous human mobility behavior 
– Varying tendencies to explore and exploit

Challenges

Any generative method needs to be flexible enough to capture 
these individual-level complexities

4



> How do we generate synthetic mobile data that 

replicates real individuals’ travel behavior?

– To what extent are kernel methods (i.e. Gaussian processes) 

suitable to act as generative modeling frameworks for 

individual trip data?

Research Question
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GPs consider the space of all possible models and 
output the most likely given your training data

  (a), prior      (b), posterior
Panel (a) shows four samples drawn from the prior distribution. Panel (b) shows 
the situation after two datapoints have been observed. The mean prediction is 
shown as the solid line and four samples from the posterior are shown as dashed 
lines. Shaded region denotes twice the standard deviation at each input value 𝑥

6



The basic form of our location learning problem is

where 𝑓 specifies a systematic function of exogenous variables 𝐗 and 𝜀 is 
Gaussian white noise. We represent 𝑦 through latitudes 𝜙 and longitudes 𝜆

where 𝑦!" is the output for the tth task on the ith observation. 
Given two correlated tasks, the covariance structure for the output vector 
can be specified as

where 𝐊# is a PSD matrix containing the inter-task 

covariance and 𝑘 is any valid PSD kernel.

Multi-task Gaussian Process
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An inferred location 𝑦∗ of a new input vector 𝐱∗ conditioned on the training 
data is then assumed to be distributed as follows

where ⊗ denotes the Kronecker product, 𝑘"
# selects the tth column of 𝐊#, 

𝑘∗ = 𝑘(𝑥∗, 𝐗) is the vector of covariance between the test point and the 
training set, and 𝑘∗∗ = 𝑘 𝑥∗, 𝑥∗ . 

Finally, we minimize the negative marginal log-likelihood in determining the 
optimal model hyperparameters Θ

Multi-task Gaussian Process
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Initialize the allowed set 
of base kernels 𝐵 and 
the number of MKL 
branches 𝑀

L E V E L  0

For each 𝐵!  in 𝐾:
 Maximize MLL 

Calculate BIC
End for.

L E V E L  1

Choose 𝑘!  that has the 
smallest BIC as the 

current kernel 𝑘"#$$

Initialize the set of 
algebraic operations

𝐴 = [+,×]

For each 𝑘!  in 𝐵:
 𝑘! = 𝑘"#$$ + 𝑘!
 𝑘! = 𝑘"#$$×𝑘!
 𝜂% =

&
'

 Maximize MLL
 Calculate BIC
End for.

𝑘"#$$  = 𝑘!  which has the 
lowest BIC 

L E V E L  M

…

For each 𝑘!  in 𝐵:
 𝑘! = 𝑘"#$$ + 𝑘!
 𝑘! = 𝑘"#$$×𝑘!
 𝜂% =

&
'

 Maximize MLL
 Calculate BIC
End for.

𝑘"#$$  = 𝑘!  which has the 
lowest BIC 

Initialize kernel weight 
constraints:

𝜂! ≥ 0

$
!"#

$
𝜂 = 1

Where 𝑁 is the number of 
kernel components

Greedy Multiple Kernel Learning
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Example MKL progression
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Different composite kernels showcase varying 
convergence behavior



> Physical variables (i.e., instantaneous velocity, direction of travel) are 
functions of the transportation network
– Speed limits, street widths, and traffic dictate how fast one can go in 

any given segment
– Bodies of water or the existence of pavement dictate which 

direction one can travel at a given location

Physics-informed GP
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We define functional constraints that reflect the limitations of human 
mobility within the given spatial and temporal context

However, functional constraints are hard to enforce within GPs. Instead, we 
enforce it on a set of constraint points 

The Constrained Optimization Problem
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Model Framework



Implementation
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• Jan 2020 – July 2020
• Greater Seattle Area



Learning Temporal Patterns

𝐾 =#
012

3

𝐾45,0×𝐾674,2 +#
012

3

𝐾45,0×𝐾674,2
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Learning Physical Constraints

𝐾 = 𝐾!"#,%×𝐾!"#,& +𝐾'(,%×𝐾'(,&
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Results
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