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Motivation

▶ The past: active solicitation (i.e., travel surveys)
▶ Low sample sizes
▶ Mixed reporting accuracy
▶ Demographic info available

▶ The present (and future): passively-generated mobile data
▶ Massive sample sizes
▶ Found “in the wild”; data points are not generated due to any

research-related processes
▶ Prevalence of sparsity (large chunks of missing data)
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Motivation

▶ Two pervasive issues:
▶ As data collection practices become more transparent and

user-centric, the sparsity issue only gets worse (DeGiulio et al.,
2021)

▶ Researchers are not able to share individual mobile data used
in their studies due to privacy agreements with data providers
(Gao et al., 2019; Rao et al., 2018; Liu and Onnela, 2021)

▶ The above motivates:
▶ An imputation method to correct missing data in GPS traces

at various levels (Ugurel et al., 2024)
▶ A generative modeling framework for individual mobile data to

create synthetic datasets replicating real travel behavior
(Ugurel, E., Huang, S., Chen, C., under review)
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Domain Challenges

▶ Travel behavior heterogeneity at the individual-level (Bayarma
et al., 2007; Kitamura and Van Der Hoorn, 1987; McGuckin
and Murakami, 1999; Nishii et al., 1988; Lee and McNally,
2006).

▶ Physical system complexities imposed by the built and natural
environments

5 / 49



Problem Definition

Let T, P, and Y be defined as follows

T =

t1,1 . . . td,1
... . . . ...

t1,n . . . td,n

 =

t1
...

tn

 ,P =

v1 β1
... ...

vn βn

 ,Y =

yλ,1 yϕ,1
... ...

yλ,n yϕ,n

 .

We assume the following causal structure between T, P, and Y
T P

Y
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Research Questions

▶ Given time, how do we infer (predict) spatial locations?
▶ How do we infuse physics (i.e., constraints from velocity and

bearing) into the inference problem from time to location, as
stated above?
▶ Note that this is different than the estimation problem

T→ Y← P, when all variables are observed (albeit noisy)
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Research Questions1

▶ Given time, how do we infer (predict) spatial locations?
▶ How do we infuse physics (i.e., constraints from velocity and

bearing) into the inference problem from time to location, as
stated above?
▶ Note that this is different than the estimation problem

T→ Y← P, when all variables are observed (albeit noisy)

1Papers:
▶ Ugurel, E., Guan, X., Wang, Y., Huang, S., Wang, R., Chen, C., 2024.

Correcting Missingness in Passively-generated Mobile Data using
Multi-task Gaussian Processes. To appear in latest issue of
Transportation Research Part C.

▶ Ugurel, E., Huang, S., Chen, C., 2024. Uncovering physics-regularized
data generation processes for individual human mobility: A multi-task
Gaussian process approach based on multiple kernel learning. Under
review.
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Multi-task Gaussian Process

▶ First, let’s focus on modeling the relationship T→ Y.
Consider the task of learning a function fj : Rd → R where j
refers to either latitude ϕ or longitude λ. The basic form of
our learning problem is

yji = fj(ti) + ϵji, (1)

where fj is a systematic function mapping inputs ti to output
yji, and ϵji ∼ N (0, δ2

j ) are independent random variables for
noise associated with the jth task.

▶ We place a GP prior on fj such that fj ∼ GP(m(·), k(·, ·)),
where m(·) = E[fj(·)] is the mean function, and k(·, ·) is the
covariance (or kernel) function.
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Intuition

GPs consider the space of all possible functions and return the
most likely given your training data (+ your choice of kernel)
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Multi-task Gaussian Process

Assumption
The set fj = [fj(t1), . . . , fj(tn)]⊤ follows a multivariate normal
distribution such that p(fj|T) = N (0,Kt), where Kt is the
covariance matrix such that [Kt]i,g = kt(ti, tg).

We relate multiple tasks (each multivariate normal distributed) by
leveraging the correlations between them. Thus, we specify the
covariance matrix for all n observations and two tasks as

Kt = Kt(T,T)⊗Kf(yλ, yϕ), (2)

where Kt is the n× n covariance matrix of the training times using
any valid PSD kernel, ⊗ is the Kronecker product, and Kf is a
PSD matrix containing the inter-task covariances (Bonilla et al.,
2007). The dimension of Kt for two tasks is then 2n× 2n.
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Model Inference

Assumption
The inferred location fj(t∗) of a new input t∗ conditioned on the
training data is assumed to be distributed with the following form:

p(fj(t∗)|t∗,T,Y, δ2
j ) ∼ N (µµµ∗,σσσ

2
∗), (3)

where

µµµ∗ = (kf
j ⊗ k∗)(Kf ⊗Kt + D⊗ I)−1vec(Y)

σσσ2
∗ = (kf

j ⊗ k∗∗)− (kf
j ⊗ k∗)(Kf ⊗Kt + D⊗ I)−1(kf

j ⊗ k∗).
(4)

Here, kf
j selects the jth column of Kf, k∗ = k(t∗,T) is the vector of

covariances between the test point and the training set, D is a
2× 2 diagonal matrix with the variances of the noise processes for
latitude and longitude δ2

j , and k∗∗ = k(t∗, t∗).

12 / 49



Model Training

We minimize the negative marginal log-likelihood (MLL) of the
output vectors with respect to the training data in determining the
optimal hyperparameters.

−log(p(Y|T,Θ)) =
1
2 [vec(Y)⊤ΣΣΣ−1vec(Y)+log(det(Kt))+|Θ|log(2π)],

(5)
where Θ is the set of model parameters, |·| denotes cardinality,
ΣΣΣ = Kf ⊗Kt + D⊗ I, and det(Kt) is the determinant of the Kt
matrix.
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Kernels for Human Mobility
We consider the squared exponential (SE), rational quadratic
(RQ), and Matern (MAT) 5/2 kernels:

kSE = η exp

(
−
|xi − xg|2

2l2
)
, (6)

kRQ = η

(
1 +
|xi − xg|2

2αl2
)−α

, (7)

kMAT5/2 = η

(
1 +

√
5|xi − xg|

l +
5|xi − xg|2

3l2

)
exp

(
−
√

5|xi − xg|
l

)
,

(8)

where |xi − xg| represents the Euclidian distance between any pair
of inputs xi and xg; η is a scale parameter; the lengthscale l
determines the smoothness of the function; and the scale mixture
α determines the relative weight of large- and small-scale
variations in the data.
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Kernels for Human Mobility
▶ We represent calendar-based structures like days, weeks, and

months as binary variables using a one-of-k encoding.
▶ For example, as the days of the week can take one of seven

values {Mo,Tu,We,Th,Fr, Sa, Su}, a one-of-k encoding of We
will correspond to {0, 0, 1, 0, 0, 0, 0}

▶ We embed categorical inputs in a GP framework by
multiplying the same kernel across one-hot encodings

kRQcat =
d∏

u=1
kRQu (9)

▶ We also use the periodic kernel, which allows GPs to model
functions that repeat themselves

kPER = exp

(
−

2 sin2(π|xi − xg|/p)
l2

)
(10)
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Kernels for Human Mobility

k = kPER × kSE

k = kRQ × kSE
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Dataset
▶ Privacy-protected mobile data from Spectus
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Data Prepreprocessing

▶ Oscillation Correction
▶ Filter by maximum velocity (i.e., 200 km/h)

▶ Noise Filtering
▶ Exclude observations with less than 300 meters in precision

▶ Input/output normalization
▶ Mean of 0 and variance of 1
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Defining Missingness
▶ Mobile data is irregularly sampled. Thus, we need a

mathematical convention to denote varying levels of
missingness

▶ Let T denote a the full length of a period, which we can
discretize into P intervals of length τ . Let Ip be an indicator
variable such that

Ip =

{
1 if p has at least one observation
0 otherwise

▶ We can define temporal occupancy as

qτ =
1
P

P∑
p=1

Ip
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Varying Levels of Missingness
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Experiment 1: Parameter Convergence
▶ K-means clustering to group together similar trips

▶ Heading Change Rate: Ratio of consecutive points where a
user changes direction with an angle exceeding a threshold
(we use 0.33 rad)

▶ Velocity Change Rate: Ratio of consecutive points where the
user exceeds a speed variation threshold (we use 26%)

▶ Stop Rate: Ratio of points with an inferred velocity lower
than a threshold (we use 0.89 m/s)
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Experiment 1: Parameter Convergence
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Experiment 1: Parameter Convergence

▶ The variability in lengthscales observed for walking trips may
be attributed to the wide spectrum of walking behaviors.

▶ For mixed trips, the lower average lengthscale may be due to
non-smooth transitions (or ’kinks’) in the data introduced by
mode changes
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Experiment 2: Robustness Checks

▶ Goal: Assess model performance against other time-series
imputation methods in a variety of missingness conditions

▶ Method: Simulate gaps by reserving a subset of data for
testing, which we choose according to different temporal
resolutions

▶ Kernel

k =
d∏

u=1
kRQu × kPER +

d∏
u=1

kRQu × kPER
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Experiment 2: DTW
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Experiment 2: Benchmarks
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Research Questions2

▶ Given time, how do we infer (predict) spatial locations?
▶ How do we infuse physics (i.e., constraints from velocity and

bearing) into the inference problem from time to location, as
stated above?
▶ Note that this is different than the estimation problem

T→ Y← P, when all variables are observed (albeit noisy)

2Papers:
▶ Ugurel, E., Guan, X., Wang, Y., Huang, S., Wang, R., Chen, C., 2024.

Correcting Missingness in Passively-generated Mobile Data using
Multi-task Gaussian Processes. Under review.

▶ Ugurel, E., Huang, S., Chen, C., 2024. Uncovering physics-regularized
data generation processes for individual human mobility: A multi-task
Gaussian process approach based on multiple kernel learning. Under
review.
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Background

▶ Physical systems tend to have differential equations or other
governing equations that describe the dynamics of the system.

▶ The Latent Force Model (Alvarez et al., 2013; Álvarez et al.,
2009) has been successful in enforcing physical laws in a GP
framework.
▶ However, the LFM formulation is based on kernel convolution,

and obtaining an analytical kernel after this process restricts
usage to simple/smooth kernels (i.e., the Gaussian kernel).

▶ This could hinder our ability to incorporate physical knowledge
into kernels that are more intricate but extremely adaptable,
such as those developed through our greedy learning algorithm.

▶ Inspired by Lasserre et al. (2006) and Wang et al. (2022), we
propose a hybrid conditional-generative model that acts as a
soft regularizer for the existing multi-task GP framework.
▶ This model does not restrict the class of kernels that can be

used, making it suitable for our approach.
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Physics-regularized GP
Assume that the differential equation that describes the physical
knowledge we want to embed in the GP takes the form

Ψf(x) = g(x) (11)

where Ψ is a differential operator and g(x) is a latent function
whose form we may not know. We propose the following system of
equations that describe fine-grained individual human mobility

fλ(t, v,Θ) =

∫ t

0
v cos(Θ)dt, fϕ(t, v,Θ) =

∫ t

0
v sin(Θ)dt (12)

where taking the partial derivative with respect to time results in

∂fλ
∂t = v cos(Θ) = vλ,

∂fϕ
∂t = v sin(Θ) = vϕ (13)
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Physics-regularized GP

Estimating observations of segment velocity and bearings is then
as easy as

v =
√

v2
λ + v2

ϕ (14)

β = arctan

(vϕ
vλ

)
= arctan

(
∂fϕ
∂fλ

)
(15)

where β denotes the bearing. From here, we need to come up with
a way to derive ”virtual” observations of these variables at new
locations Ygen and times Tgen. This would be the generative
model for the latent function g(x). The conditional component of
the proposed model is that of the multi-task GP with predictions
sampled from Equation 4.
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Step 1: Generate a set of locations

We first generate set of locations (not necessarily in either training
or testing data)

Ygen = [Ygen,1, . . . ,Ygen,m]
⊤ =

[
ygen,1ϕ, . . . , ygen,mϕ

ygen,1λ, . . . , ygen,mλ

]⊤
induced by a set of times Tgen using the conditional GP
f(Tcond) ∼ GP(0,Kt(Tcond,Tcond)) via Equations 3 and 4. The
multivariate Gaussian projection of g on
Z = [Ygen,Tgen] = [z1, . . . , zm] can then be defined as

p(g|Z) = N (0,KZ) = N (g,KZ) (16)

where g = [g(z1), . . . , g(zm)]⊤, [KZ]ij = k(zi, zj).
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Step 2: Linking the conditional GP to the differential
equation g(x)

The key idea here is that from the GP posterior distribution, we
can construct a sample of the target function f(·) = µ(·) + ϵ

√
v(·)

where ϵ ∼ N (0, 1), µ(·) is the posterior mean, and
√

v(·) is the
posterior standard deviation functions. While ϵ makes f a random
function, it still has a closed form and we can apply the differential
operator Ψ to obtain the new function g

g(·) = Ψ[µ(·) + ϵ
√

v(·)] (17)

Thus, to sample the values of g on pairs of yi and ti, we can
sample from

p(g|ϵ,Tcond,Ycond) =
m∏

j=1
δ

(
g̃j −Ψ

[
µ(zj) + ϵ

√
v(zj)

])
, (18)

where g̃j = g(zj) and δ(·) is the Dirac delta prior.
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Step 3: The generative model

We can then sample virtual observations of the physical knowledge
Pgen at the generated locations Ygen and times Tgen. This
sampling process creates the generative model, with probability

p(Pgen,Ygen|g,Tgen) = p(Ygen)p(0|Ygen, g)
= p(Ygen)N (g,KZ)

(19)

where we marginalize the latent variable p(Tgen) as it is
modeler-specified and not dependent on any other variables.
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Step 4: Combining the conditional and generative model

Using equations ...., we obtain the joint probability

p(Ycond,Pgen,Ygen, ϵ, g|Tcond)

= p(Ycond|Tcond)p(Ygen)p(ϵ)p(g|ϵ,Tcond, y)p(Pgen|g,Ygen) (20)

which simplifies to

p(Ycond,Pgen,Ygen, ϵ, g|Tcond)

= N (0,Kt)p(Ygen)N (0, 1)
m∏

j=1

(
g̃j −Ψ

[
µ(zj) + ϵ

√
v(zj)

])
N (g,KZ)

(21)
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Learning Multiple Kernel Structures
▶ To account for individual heterogeneity, we need a systematic

method to find the optimal mix of kernels
▶ We propose a greedy multiple kernel learning algorithm
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Learning Multiple Kernel Structures
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Model Inference

▶ Conditional-generative inference model (Lasserre et al., 2006)
▶ First, generate a set of noisy locations

Ȳgen = [ȳgen,1, . . . , ȳgen,m]⊤ induced by a set of times Tgen
using the conditional multi-task GP fy ∼ GP(0,Kt)

37 / 49



Model Inference
▶ To estimate Pgen, we require a second posterior that takes in

spatial and temporal observations Z =
[
Ycond Tcond

]
and

approximates a function fp : Z −→ Pcond.
▶ This is achieved by defining another multi-task GP for the

physical variables fp ∼ GP(0,Kp) where
[Kp]i,g = kcomp(zi, zg). Sampling from the posterior
distribution Pgen ∼ p(Tgen)p(fp|Ȳgen,Ycond,Tcond,Pcond))
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Model Inference

▶ The set of generated physical variables are then incorporated
as inputs to the physics-regularized GP model.

▶ To generate physics-regularized synthetic data, we sample
from the physics-regularized GP fy ∼ GP(0,Kcomp) where
[Kcomp]i,g = kcomp(xi, xg).

39 / 49



Impact of Kernel Choice
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Pgen inference
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Pgen inference
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Performance

T, P, and PT denote the temporal-only, physical-only, and
physics-regularized GP models, respectively. The MSLL plot is
log-scaled in the y-axis.
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Takeaways

▶ Different types of trips necessitate inherently different GP
models

▶ GPs generalize better than traditional time-series
extrapolation models

▶ The impact of kernel choice on mobility metrics derived from
synthetic data is non-negligible

▶ Physics-regularization not only reduces model bias but also
improves uncertainty estimates associated with the predicted
locations.
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Connect with me

▶ Email: ekinokos2 [at] gmail [dot] com
▶ Website: ekinugurel.github.io
▶ LinkedIn: linkedin.com/in/ekin-ugurel
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