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Motivation

» The past: active solicitation (i.e., travel surveys)

» Low sample sizes

» Mixed reporting accuracy

» Demographic info available

» The present (and future): passively-generated mobile data

» Massive sample sizes

» Found “in the wild"; data points are not generated due to any
research-related processes

> Prevalence of sparsity (large chunks of missing data)
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Motivation

> Two pervasive issues:
» As data collection practices become more transparent and
user-centric, the sparsity issue only gets worse (DeGiulio et al.,
2021)
P Researchers are not able to share individual mobile data used
in their studies due to privacy agreements with data providers
(Gao et al., 2019; Rao et al., 2018; Liu and Onnela, 2021)

» The above motivates:

» An imputation method to correct missing data in GPS traces
at various levels (Ugurel et al., 2024)

» A generative modeling framework for individual mobile data to
create synthetic datasets replicating real travel behavior
(Ugurel, E., Huang, S., Chen, C., under review)
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Domain Challenges

» Travel behavior heterogeneity at the individual-level (Bayarma
et al., 2007; Kitamura and Van Der Hoorn, 1987; McGuckin
and Murakami, 1999; Nishii et al., 1988; Lee and McNally,
2006).

» Physical system complexities imposed by the built and natural
environments
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Problem Definition

Let T, P, and Y be defined as follows
ti1 ... tg1 t1 vi [ VAL Yol
T=]": =1 ,P=1" Y= :
tin .- tldn t, Vo Bn Yxn Yo.n

We assume the following causal structure between T, P, and Y
T P
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Research Questions

» Given time, how do we infer (predict) spatial locations?
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Research Questions

» Given time, how do we infer (predict) spatial locations?

» How do we infuse physics (i.e., constraints from velocity and
bearing) into the inference problem from time to location, as
stated above?

» Note that this is different than the estimation problem
T — Y < P, when all variables are observed (albeit noisy)
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Research Questions?

» Given time, how do we infer (predict) spatial locations?

Papers:

» Ugurel, E., Guan, X., Wang, Y., Huang, S., Wang, R., Chen, C., 2024.

Correcting Missingness in Passively-generated Mobile Data using
Multi-task Gaussian Processes. To appear in latest issue of
Transportation Research Part C.
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Multi-task Gaussian Process

> First, let's focus on modeling the relationship T — Y.
Consider the task of learning a function f; : R? — R where j
refers to either latitude ¢ or longitude A. The basic form of
our learning problem is

yji = fi(ti) + €ji, (1)
where f; is a systematic function mapping inputs t; to output
yji and € ~ N(O,(sz) are independent random variables for

noise associated with the jt task.

» We place a GP prior on f; such that f; ~ GP(m(-), (-, -)),
where m(-) = E[f;(-)] is the mean function, and k(-,-) is the
covariance (or kernel) function.
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Intuition

GPs consider the space of all possible functions and return the
most likely given your training data (+ your choice of kernel)

X0 =
=
-2
0 05 1 0 05 1
input, x input, x
(a), prior (b), posterior

Panel (a) shows four samples drawn from the prior distribution. Panel (b) shows
the situation after two datapoints have been observed. The mean prediction is
shown as the solid line and four samples from the posterior are shown as dashed
lines. Shaded region denotes twice the standard deviation at each input value x
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Multi-task Gaussian Process

Assumption

The set f; = [(t1), ..., fi(t,)]" follows a multivariate normal
distribution such that p(fj|T) = N(0,K;), where K, is the
covariance matrix such that [K¢ig = k(t;, tg).

We relate multiple tasks (each multivariate normal distributed) by
leveraging the correlations between them. Thus, we specify the
covariance matrix for all n observations and two tasks as

K: = K{(T,T) ® K'(yx, y0), (2)

where Kt is the n x n covariance matrix of the training times using
any valid PSD kernel, ® is the Kronecker product, and K is a
PSD matrix containing the inter-task covariances (Bonilla et al.,
2007). The dimension of K; for two tasks is then 2n x 2n.
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Model Inference

Assumption

The inferred location fj(t,) of a new input t, conditioned on the
training data is assumed to be distributed with the following form:

p(fj_(t*)|t*7TaY’5J2) NN(“*705)7 (3)
where

p, = (kf @ k)(K'@ Kf+ D @ 1) Tvec(Y) @)
0= (kl®ky)— (Klok)K @K+ D) (k@ k,).

Here, kjf selects the jt column of Kf, k, = k(t., T) is the vector of
covariances between the test point and the training set, D is a

2 x 2 diagonal matrix with the variances of the noise processes for
latitude and longitude 0%, and k. = k(t., t.).
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Model Training

We minimize the negative marginal log-likelihood (MLL) of the
output vectors with respect to the training data in determining the
optimal hyperparameters.

—log(p(Y|T, 0)) = %[vec(Y)TZ_lvec(Y)+Iog(det(Kt))—i—]9]Iog(27r)],
(5)

where © is the set of model parameters, |-| denotes cardinality,
Y = K@K+ D®I, and det(K;) is the determinant of the K,
matrix.
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Kernels for Human Mobility

We consider the squared exponential (SE), rational quadratic
(RQ), and Matern (MAT) 5/2 kernels:

2
kse = e (2750, ©)
’Xi—xg|2 -
kro = 1+ —
r=n (14 5) @
V5|x; — Xg| | 5|xi— Xg|2 V5|x; — Xg]
k/\/IAT5/2 =1 (1 + / + 3R exp | — / )
(8)

where |x; — xg| represents the Euclidian distance between any pair
of inputs x; and xg; 77 is a scale parameter; the lengthscale /
determines the smoothness of the function; and the scale mixture
« determines the relative weight of large- and small-scale
variations in the data.
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Kernels for Human Mobility
P> We represent calendar-based structures like days, weeks, and
months as binary variables using a one-of-k encoding.

» For example, as the days of the week can take one of seven
values {Mo, Tu, We, Th, Fr, Sa, Su}, a one-of-k encoding of We
will correspond to {0,0,1,0,0,0,0}

> We embed categorical inputs in a GP framework by
multiplying the same kernel across one-hot encodings

d
kRQcat = H kRQu (9)
u=1

> We also use the periodic kernel, which allows GPs to model
functions that repeat themselves

) oy
kPER = exp <_2SIn (7T|);; g|/P)> (10)
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Kernels for Human Mobility
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Dataset

» Privacy-protected mobile data from Spectus
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Data Prepreprocessing

» Oscillation Correction

» Filter by maximum velocity (i.e., 200 km/h)
> Noise Filtering

» Exclude observations with less than 300 meters in precision
» Input/output normalization

» Mean of 0 and variance of 1
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Defining Missingness

» Mobile data is irregularly sampled. Thus, we need a
mathematical convention to denote varying levels of
missingness

» Let 7 denote a the full length of a period, which we can
discretize into P intervals of length 7. Let I, be an indicator
variable such that

B {1 if p has at least one observation
p=

0 otherwise

> We can define temporal occupancy as
P
1
G =52
p=1
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Varying Levels of Missingness

=5 min T=15min T=30min
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Experiment 1: Parameter Convergence

> K-means clustering to group together similar trips

Heading

Velocity

Avg. . .
Cluster | nyoge Vel. Dlslta:n:e Du;aln on Change | Change | Observations i::p
s | ™ s Rate | Rate ¢
Slow,
shortips | Wak | 929 | 8088 | 1062 | 00019 | 00024 279 | 0.0007
Medium
Jpeed] | e | 1394 | 29693 | 2362 | 00007 | 0.0008 4985 | 0.0002
trips
Fast,
distant | ¢, | 1786 | 59,200 | 3449 | 00005 | 0.0006 1418 0.0001

trips

» Heading Change Rate

. Ratio of consecutive points where a

user changes direction with an angle exceeding a threshold
(we use 0.33 rad)

» Velocity Change Rate: Ratio of consecutive points where the
user exceeds a speed variation threshold (we use 26%)

» Stop Rate: Ratio of points with an inferred velocity lower

than a threshold (we use 0.89 m/s)
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Experiment 1: Parameter Convergence
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Experiment 1: Parameter Convergence
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» The variability in lengthscales observed for walking trips may
be attributed to the wide spectrum of walking behaviors.

» For mixed trips, the lower average lengthscale may be due to
non-smooth transitions (or 'kinks') in the data introduced by
mode changes
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Experiment 2: Robustness Checks

» Goal: Assess model performance against other time-series
imputation methods in a variety of missingness conditions

» Method: Simulate gaps by reserving a subset of data for
testing, which we choose according to different temporal
resolutions

> Kernel

d d
k= H krqQ, X KPER + H krq, X kper

u=1 u=1
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Experiment 2: DTW
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Experiment 2: Benchmarks

Time Method Number of | Radius of Straight-Line Random Real Uncorrelated
Gap Locations | Gyration | Travel Distance | Entropy | Entropy Entropy
MTGP | 26 X 205.029 0.045 0278 0.153
RBF | 801 0835 -888.441 9647 |-9323 -9.527
SES | 801 0835 -888.441 951 |-9.323 9527
1 week Holt | 801 0835 -888.441 951|933 9.527
ES| -178 0621 -643.909 -4.989 -1.726 -4.955
ARIMA | 801 0835 -888.441 9276 |-9323 -9.527
SARIMAX | 801 0835 -888.441 9647 |-9.323 9527
MTGP | 335 -0.245 236.805 0.036 0227 017
RBF | -1050 0.909 -1303.06 10038 |-9.612 | -9.806
SES | -1050 0871 -1303.06 -9.309 -9.612 -9.806
1 day Holt | -1050 0846 -1303.06 9223|961 -9.803
ES| -1027 0718 -768.678 -4.878 -7.907 -5.225
ARIMA | -1050 0834 -1303.06 8506 |-0.600 | -9.803
SARIMAX | 1050 0.909 -1303.06 10038 | -9612 | -9.806
MTGP | 34 -0.187 -13.641 0.042 0.237 0.155
RBF | 9565 -0.645 -1223.47 -9.809 -9.493 -9.751
SES | -954 0.645 -1177.23 9139 |-9.493 -9.608
6 hours Holt | -952 0645 117179 8803 |-9.493 9533
ES| <929 04 -768.56 -4.895 -7.869 -5.066
ARIMA | 952 0.645 -1178.65 8317 |-9.493 0,608
SARIMAX | 9565 -0.645 -1223.47 -9.901 -9.493 -9.751
MTGP | 385 0.074 389308 0053|029 0.157
RBF | 902 0.94 -1319.47 -9.818 -9.548 -9.761
SES | 9015 0761 -1262.95 7980|0546 | 9642
1 hour Holt | 9015 0761 -1262.95 7041 |-9.543 9.642
ES| -8785 0627 <7119 4.8 -7.816 -5.174
ARIMA | 8985 0761 -1262.76 6801 |-9.545 | -9613
SARIMAY | 8305 .64 -1161.14 6435 |-9.455 | -9.449
MTGP | 21 0.435 123.606 0.048 0314 0.166
RBF | 6245 =136 -1043.86 -9.052 -8.954 -9.161
0 SES | 614 1175 -1025.83 7405|8954 |9
Holt | 614 -1.167 -1025.83 6872 -8.953 -8.952
minules ES| -591 -1.145 707361 4098 | -7.07 4445
ARIMA | 614 -1.214 -1027.68 -6.282 -8.949 -8.952
SARIMAY | 6245 136 -1043.86 9277 | 8os4 | 0161
MTGP| 22 0299 EAT 0048|0323 0161
RBF | 670 215 -1112.56 8925 |-8.871 -9.125
s SES | -660 LTl -1162.11 734 8871 8994
Holt | 660 -2.099 -1162.07 -6.435 -8.871 -8.849
minules ES | 637 2056 -513.035 3.96 €771 4497
ARIMA | 659 -1.931 -1168.42 -6.048 -8.871 -8.851
SARIMAXY | 670 215 -1199.07 930 8871 9,146
MTGP | 21 -0.824 47.301 0.056 0301 0.156
RBF | -896 -1.396 -1441.06 9791|9302 | -9.571
SES | 896 -1274 -1391.03 6757|9302 | -9571
5 minutes Holt | -893 1012 -1391.03 6555|9302 | -93%4
ES | 872 0744 666,535 4313 |-6.643 498
ARIMA | 896 -1339 -1391.03 6754|9302 | -9.495
SARIMAX | -896 -1.396 -1441.06 9800 |-9302 | -957
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Research Questions?

» How do we infuse physics (i.e., constraints from velocity and
bearing) into the inference problem from time to location, as
stated above?

» Note that this is different than the estimation problem
T — Y + P, when all variables are observed (albeit noisy)

2Papers:

» Ugurel, E., Huang, S., Chen, C., 2024. Uncovering physics-regularized
data generation processes for individual human mobility: A multi-task
Gaussian process approach based on multiple kernel learning. Under
review.
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Background

» Physical systems tend to have differential equations or other
governing equations that describe the dynamics of the system.

» The Latent Force Model (Alvarez et al., 2013; Alvarez et al.,
2009) has been successful in enforcing physical laws in a GP
framework.

» However, the LFM formulation is based on kernel convolution,
and obtaining an analytical kernel after this process restricts
usage to simple/smooth kernels (i.e., the Gaussian kernel).

» This could hinder our ability to incorporate physical knowledge
into kernels that are more intricate but extremely adaptable,

such as those developed through our greedy learning algorithm.

» Inspired by Lasserre et al. (2006) and Wang et al. (2022), we
propose a hybrid conditional-generative model that acts as a
soft regularizer for the existing multi-task GP framework.

» This model does not restrict the class of kernels that can be
used, making it suitable for our approach.
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Physics-regularized GP

Assume that the differential equation that describes the physical
knowledge we want to embed in the GP takes the form

Vfi(x) = &(x) (11)

where W is a differential operator and g(x) is a latent function
whose form we may not know. We propose the following system of
equations that describe fine-grained individual human mobility

i(t,v,0) = /Ot veos(©)dt,  fu(t,v,0) = /Ot vsin(©)dt (12)

where taking the partial derivative with respect to time results in

o B [ B
B = vecos(©) = vy, 5 — vsin(©) = vy (13)

29 /49



Physics-regularized GP

Estimating observations of segment velocity and bearings is then
as easy as

v=4/Vi+ V] (14)

_ Vo) _ Ot
B = arctan (v,\) = arctan <8f)\> (15)

where 3 denotes the bearing. From here, we need to come up with
a way to derive "virtual” observations of these variables at new
locations Y g, and times Tge,. This would be the generative
model for the latent function g(x). The conditional component of
the proposed model is that of the multi-task GP with predictions
sampled from Equation 4.
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Step 1: Generate a set of locations

We first generate set of locations (not necessarily in either training
or testing data)

T
T Ygen,1¢; - - -5 Ygen,m
Ygen = [Ygen,la sy Ygen,m] - £ ¢ £ ¢
Ygen, 1) - - -y Ygen,m)\

induced by a set of times T, using the conditional GP

AT cond) ~ GP(0, Ke(T cond, Tcond)) via Equations 3 and 4. The
multivariate Gaussian projection of g on

Z = [Ygen, Tgen) = [21,...,2Zm] can then be defined as
p(gZ) = N'(0.Kz) = N(g. Kz) (16)

where g = [g(z1), ..., &(zm)] T, [Kzlij = k(zi, z)).
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Step 2: Linking the conditional GP to the differential

equation g(x)
The key idea here is that from the GP posterior distribution, we
can construct a sample of the target function f{-) = u(:) + ey/v(-)
where € ~ N(0,1), p(-) is the posterior mean, and \/v(*) is the
posterior standard deviation functions. While ¢ makes f a random
function, it still has a closed form and we can apply the differential
operator W to obtain the new function g

g() = V[u() + e/ V()] (17)

Thus, to sample the values of g on pairs of y; and t;, we can
sample from

p(sle, Teonds Y cond) ]TP(g, [ zj) + \/V(TJ)D (18)

where g; = g(z;) and 4(-) is the Dirac delta prior.
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Step 3: The generative model

We can then sample virtual observations of the physical knowledge
Pgen at the generated locations Yge, and times Tge,. This
sampling process creates the generative model, with probability

P(Pgen; Y gen|8, Tgen) = P(Ygen)P(0]Y gen; 8)

— oY en)N (. K2) (19)

where we marginalize the latent variable p(Tgen) as it is
modeler-specified and not dependent on any other variables.
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Step 4: Combining the conditional and generative model

Using equations ...., we obtain the joint probability

p(Yconda Pgen; Ygem €, g|Tcond)
= p(Ycond’Tcond)p(Ygen)p(e)p(g‘Ea Tconda Y)p(Pgen‘ga Ygen) (20)

which simplifies to

p(Yconda Pgena Ygena €, g|Tcond)

m

= VORI e WOV (5 ¥ (2 + /)| ) e )

j=1
(21)

34/49



Learning Multiple Kernel Structures
» To account for individual heterogeneity, we need a systematic
method to find the optimal mix of kernels

> We propose a greedy multiple kernel learning algorithm
STEP O STEP 1 STEP M

Initialize the allowed set
of base kernels B and

the number of MKL
branches M

Foreach k; in B:

Foreach k; in B:

Knew = K, k, Knew = K k
Initialize the set of k“m _ k”‘” : k" k"ew _ k""" :k"
algebraic operations new o Tar a mew a
A=[+x] =y . =y
Maximize MLL Maximize MLL
Calculate BIC Calculate BIC
Initialize kernel weight End for. End for.
constraints:
20 wee
M
Z m=1
- "~ /

Kcurr = Knew Which has

For each ky, in B: the lowest BIC

Maximize MLL
Calculate BIC
End for.

l, Keyrr = Kpgy which has
the lowest BIC

Choose ky, that has the
smallest BIC as the -
current kernel k

curr
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Learning Multiple Kernel Structures

Step 0 [ * ] [ re ]

- () B9 () B2

sten |(SE+PER) (SE + PER) (SE + PER) (SE + PER) (SE + PER) (SE+PER)
P +SE X SE +PER xPER + MAT x MAT
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Model Inference

» Conditional-generative inference model (Lasserre et al., 2006)

> First, generate a set of noisy locations
Ygen = [Ygen1s-- -, )'/ge,,,m]T induced by a set of times Tgep
using the conditional multi-task GP # ~ GP(0, K;)

Physics-informed multi-task
Greedy Multiple Kernel GP inference
Learning

Greedy Tree #1 with setof |
base kernels A

Greedy Tree #2 with set of |
base kernels B |
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Model Inference

» To estimate Pge,, We require a second posterior that takes in
spatial and temporal observations Z = [Ycond  Tecong] and
approximates a function  : Z — Popq.

» This is achieved by defining another multi-task GP for the
physical variables £ ~ GP(0,K,) where
[Kplig = kcomp(zi,Zg). Sampling from the posterior
distribution Pgen ~ P(Tgen)P(fp|Ygem Y cond; T cond; Pcond))

Greedy Multiple Kernel GP inference
Learning

Greedy Tree #1 with setof |

base kernels A h
- Kronecker
Product

Greedy Tree #2 with setof |
base kernels B )
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Model Inference

P> The set of generated physical variables are then incorporated
as inputs to the physics-regularized GP model.

P> To generate physics-regularized synthetic data, we sample
from the physics-regularized GP £ ~ GP(0, Kcomp) where
[Keomplig = kcomp(Xis Xg)-

Physics-informed multi-task

Greedy Multiple Kernel GP inference
Learning .

Greedy Tree #1 with setof |
base kernels A

Greedy Tree #2 with setof |
base kerels B )
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Impact of Kernel Choice
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Pgen inference
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Performance
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T, P, and PT denote the temporal-only, physical-only, and
physics-regularized GP models, respectively. The MSLL plot is
log-scaled in the y-axis.
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Takeaways

» Different types of trips necessitate inherently different GP
models

» GPs generalize better than traditional time-series
extrapolation models

» The impact of kernel choice on mobility metrics derived from
synthetic data is non-negligible

» Physics-regularization not only reduces model bias but also
improves uncertainty estimates associated with the predicted
locations.
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Connect with me

» Email: ekinokos2 [at] gmail [dot] com
> Website: ekinugurel.github.io
» LinkedIn: linkedin.com/in/ekin-ugurel
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