
Travel behavior, today and tomorrow: The
promises and pitfalls of emerging data for

transportation planning applications

Ekin Uğurel

University of Washington
Department of Civil and Environmental Engineering

URBDP 532: Current Topics in Transportation Planning and Policy

February 14, 2024

1 / 56



Travel Behavior: An Introduction

Travel Demand Forecasting

Emerging Data Sources for Understanding Travel Behavior and
TDF

My Research
Correcting Missingness
Generating Physically-constrained Synthetic Data
Conclusion

2 / 56



What is travel behavior?

(Goulias et al., 2020)
▶ ”In this sense, travel behavior is the combination of doing

things in different places at different times and how we move
from one place to another. Travel behavior is also about
feelings, emotions, perceptions, norms, beliefs, intentions, and
attitudes. ... Moreover, travel behavior is how to go about
deciding how to do things. Perhaps we form utilities for
everything we do, or perhaps we use intuition, or perhaps we
do both.”

▶ ”[W]e allocate time and other resources to activities and
interactions with other people that evolve over time and
space.”
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Dimensions of Travel Behavior

▶ Who: The trip maker
▶ What: Trip generation
▶ When: Departure choice, arrival time
▶ Where: Trip distribution, traffic assignment
▶ Why: Trip purpose
▶ How: Mode choice
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Influences on Travel Decisions

▶ Person and household-related attributes
▶ Socioeconomics and demographics (McGuckin and Murakami,

1999; Nishii et al., 1988)
▶ Attitudes and feelings (Bayarma et al., 2007)

▶ Built environment
▶ Surrounding origin and destination
▶ Density, diversity, and design (Cervero and Kockelman, 1997)

▶ Alternative-related attributes
▶ E.g. for mode choice: What alternatives should one consider?
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Space-Time Geography
”What about people in regional science?” (Hägerstrand, 1970)
Physical, temporal constraints to locations a person can go.
▶ Spatial: Origin/destination of trip, travel distance, path

chosen, dispersion of trips
▶ Temporal: Departure time of trips, length of trip, length of

tour, frequency of trips
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Other important definitions

▶ Anchor: A primary trip destination (typically work, school,
and home)

▶ Trip: Movement in time and space connecting one origin and
destination (e.g., home to grocery store)

▶ Tour: Sequence of trips that start and end at the same
location

▶ Trip Chain: A series of trips linked together during a single
outing.

▶ Accessibility: The ease of reaching desired services,
destinations, or activities.

▶ Mode Split: The distribution of travel made by various forms
of transportation (e.g., the percentage of trips made by
walking, cycling, public transit, and private automobile).
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Wickedness of Planning Problems
One important aim of travel behavior analysis and modeling is
transportation planning to solve problems such as congestion,
accidents, waste of resources, pollution, and inequity. Most of the
transportation planning problems are “wicked” problems (Rittel
and Webber, 1973):
▶ they have unclear formulation of what the problem we need to

solve is (vagueness);
▶ their solutions emerge when they are good enough, but never

optimal (unknown optimum);
▶ progress occurs through a continuity of solutions that improve

over time (incremental progression);
▶ not all intended and unintended consequences can be traced

from the beginning (lack of complete observability);
▶ every solution to a problem leaves an unchangeable trace of

the outcome(s) (path dependence and irreversibility);
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Wickedness of Planning Problems (Cont.)

(Rittel and Webber, 1973)
▶ we cannot enumerate all possible solutions, consequences, and

outcomes (indeterminacy);
▶ problems are unique in historical time and place with no

repeatable paths to a solution (place-time uniqueness);
▶ a problem is a symptom of another problem from different

domains of the life of people (nested hierarchy of problems);
▶ real-life planning work does not allow testing and

experimentation using the scientific method (need for different
methods)
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Discussion

▶ Do you agree with Rittel and Webber’s characterizations?
Why or why not?

▶ Which dimensions of travel behavior do you think are most
useful in understanding contemporary planning problems?

▶ Questions?
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Travel Behavior → Travel Demand Forecasting
TDF: a process to predict changes in travel behavior for a specific
time and place, based on changes in land use, demographics,
preferences, technologies, and policy.

Figure: Bus ridership in King County between January 2019 and 2023.
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Why is TDF important?
▶ Groundwork for transportation infrastructure investment

decisions
▶ Critical for policy monitoring and evaluation
▶ Understand impacts of land use policies and development

decisions on transportation
▶ Others?
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Example Applications of TDF

Sound Transit light rail expansions
▶ To know where to build new lines, need to estimate future

ridership and revenue, while accounting for construction and
operation expenses

PSRC’s VISION 2050
▶ Anticipated growth of 1.5 million people in next 30 years in

Puget Sound region
▶ Focused growth in centers and near transit, reduce greenhouse

gas emissions
▶ Other focuses: healthy environment, economic prosperity,

social equity, affordable housing
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The TDF Process
▶ S (Supply): Characteristics of the general environment

(transportation and land use)
▶ D (Demand): Numbers and characteristics of trip makers

(households)
▶ T (Travel behavior): Trip-making in time and space
▶ P (Performance): Transportation system performance

S D

T

P
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Emerging Data Sources

▶ Passively-generated mobile data (i.e., GPS traces)
▶ General Transit Feed Specification (GTFS) data
▶ Transit ridership data (i.e., from Automated Passenger

Counters)
▶ Twitter/Yelp data
▶ Parking data (from third-party parking mgmt systems,

sensors)
▶ Crowdsourced congestion and incident data (i.e., from

Waze/Google Maps users)
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Example of a Travel Survey
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Passively-generated mobile data

▶ Ubiquitous, and therefore massive sample sizes
▶ Self-selection bias
▶ Observation frequency varies greatly
▶ Missing data results in bias
▶ CityCast
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Causes of sparsity in mobile data

▶ User-related causes
▶ Phone on sleep mode (hibernation)
▶ Restricted location data permissions
▶ Restricted background app refresh

▶ Geographic/built-environment-related causes
▶ Short gaps due to enclosed structures (e.g., tunnels)
▶ The Urban Canyon Effect

▶ Stochastic/miscellaneous causes
▶ Battery drain (device dead)
▶ User leaves device at home
▶ App shutdown/crash
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Inferred travel behavior is a function of sparsity

Figure: from McCool et al. (2022)
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Privacy-protected mobile data from Spectus
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Transit Network Data: GTFS
▶ Used to distribute relevant information about transit systems

to riders
▶ As seen in OneBusAway, Google Maps
▶ Contains information about routes, schedules, fares, and

geographic transit details, and it is presented in simple text
files.
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Ridership Data

▶ Increasing availability due to ubiquity of automated passenger
counters (APCs)

▶ Can accurately record boardings and alightings
▶ Helpful in providing real-time information on vehicle crowding

to transit riders (was especially important during COVID!)
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Twitter/Yelp Data

▶ Helpful for understanding attitudes towards points of interest
(POIs)

▶ Can be scraped off the web and analyzed using natural
language processing

▶ Liable to extremity bias
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Applications of Yelp Data

Ng et al., 2024 (under review)
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Parking Data
▶ Data on inventory, cost, and occupancy

▶ PSRC Parking Inventory
▶ Paid Parking Occupancy in Seattle

▶ Insights into demand
▶ Facilitates experimental designs with pricing models

▶ Can help promote more sustainable modes of transport
▶ even more novel: Satellite imagery for this purpose
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Takeaways

▶ Big data is useful for a variety of purposes, but more effort is
required to process and derive meaning from big data
compared to traditional data sources

▶ Results derived from big data should be validated by other
independent data sources (i.e., traditional flow data, survey
data, etc.)

▶ Data needs, collection procedures, and quality metrics should
be defined/designed carefully for both big data and traditional
data
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Discussion
▶ How do the accuracy and reliability of emerging data sources

like GPS traces, transit ridership data, and social media (e.g.,
Twitter, Yelp) compare to traditional data collection methods
in transportation planning? What are the implications of
these differences for travel demand forecasting?

▶ Do emerging data sources adequately represent the entire
population and all modes of transportation? How might
biases in these data sources impact travel demand forecasting
and transportation policy decisions?

▶ Personal experiences?
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My Research: Motivation

▶ Two pervasive issues:
▶ As data collection practices become more transparent and

user-centric, the sparsity issue only gets worse (DeGiulio et al.,
2021)

▶ Researchers are not able to share individual mobile data used
in their studies due to privacy agreements with data providers
(Gao et al., 2019; Rao et al., 2018; Liu and Onnela, 2021)

▶ The above motivates:
▶ An imputation method to correct missing data in GPS traces

at various levels (Ugurel et al., 2024)
▶ A generative modeling framework for individual mobile data to

create synthetic datasets replicating real travel behavior
(Ugurel, E., Huang, S., Chen, C., under review)
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Domain Challenges

▶ Travel behavior heterogeneity at the individual-level (Bayarma
et al., 2007; Kitamura and Van Der Hoorn, 1987; McGuckin
and Murakami, 1999; Nishii et al., 1988; Lee and McNally,
2006).

▶ Physical system complexities imposed by the built and natural
environments
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Research Questions

▶ Given time, how do we infer (predict) spatial locations?
▶ How do we infuse physics (i.e., constraints from velocity and

bearing) into the inference problem from time to location, as
stated above?
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Research Questions1

▶ Given time, how do we infer (predict) spatial locations?
▶ How do we infuse physics (i.e., constraints from velocity and

bearing) into the inference problem from time to location, as
stated above?

1Papers:
▶ Ugurel, E., Guan, X., Wang, Y., Huang, S., Wang, R., Chen, C., 2024.

Correcting Missingness in Passively-generated Mobile Data using
Multi-task Gaussian Processes. To appear in latest issue of
Transportation Research Part C: Emerging Technologies.

▶ Ugurel, E., Huang, S., Chen, C., 2024. Uncovering physics-regularized
data generation processes for individual human mobility: A multi-task
Gaussian process approach based on multiple kernel learning. Under
review.
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Problem Definition

Let T, P, and Y be defined as follows

T =

t1,1 . . . td,1
... . . . ...

t1,n . . . td,n

 =

t1
...

tn

 ,P =

v1 β1
... ...

vn βn

 ,Y =

yλ,1 yϕ,1
... ...

yλ,n yϕ,n

 .

We assume the following causal structure between T, P, and Y
T P

Y
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Multi-task Gaussian Process

▶ First, let’s focus on modeling the relationship T→ Y.
Consider the task of learning a function fj : Rd → R where j
refers to either latitude ϕ or longitude λ. The basic form of
our learning problem is

yji = fj(ti) + ϵji, (1)

where fj is a systematic function mapping inputs ti to output
yji, and ϵji ∼ N (0, δ2

j ) are independent random variables for
noise associated with the jth task.

▶ We place a GP prior on fj such that fj ∼ GP(m(·), k(·, ·)),
where m(·) = E[fj(·)] is the mean function, and k(·, ·) is the
covariance (or kernel) function.
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Intuition

GPs consider the space of all possible functions and return the
most likely given your training data (+ your choice of kernel)
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Data preprocessing

▶ Oscillation Correction
▶ Filter by maximum velocity (i.e., 200 km/h)

▶ Noise Filtering
▶ Exclude observations with less than 300 meters in precision

▶ Input/output normalization
▶ Mean of 0 and variance of 1
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Defining Missingness
▶ Mobile data is irregularly sampled. Thus, we need a

mathematical convention to denote varying levels of
missingness

▶ Let T denote a the full length of a period, which we can
discretize into P intervals of length τ . Let Ip be an indicator
variable such that

Ip =

{
1 if p has at least one observation
0 otherwise

▶ We can define temporal occupancy as

qτ =
1
P

P∑
p=1

Ip
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Varying Levels of Missingness
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Experiment 1: Parameter Convergence
▶ K-means clustering to group together similar trips

▶ Heading Change Rate: Ratio of consecutive points where a
user changes direction with an angle exceeding a threshold
(we use 0.33 rad)

▶ Velocity Change Rate: Ratio of consecutive points where the
user exceeds a speed variation threshold (we use 26%)

▶ Stop Rate: Ratio of points with an inferred velocity lower
than a threshold (we use 0.89 m/s)
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Experiment 1: Parameter Convergence
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Experiment 1: Parameter Convergence

▶ The variability in lengthscales observed for walking trips may
be attributed to the wide spectrum of walking behaviors.

▶ For mixed trips, the lower average lengthscale may be due to
non-smooth transitions (or ’kinks’) in the data introduced by
mode changes
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Experiment 2: Robustness Checks

▶ Goal: Assess model performance against other time-series
imputation methods in a variety of missingness conditions

▶ Method: Simulate gaps by reserving a subset of data for
testing, which we choose according to different temporal
resolutions

▶ Kernel

k =
d∏

u=1
kRQu × kPER +

d∏
u=1

kRQu × kPER
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Experiment 2: DTW
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Experiment 2: Benchmarks
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Research Questions2

▶ Given time, how do we infer (predict) spatial locations?
▶ How do we infuse physics (i.e., constraints from velocity and

bearing) into the inference problem from time to location, as
stated above?
▶ Note that this is different than the estimation problem

T→ Y← P, when all variables are observed (albeit noisy)

2Papers:
▶ Ugurel, E., Guan, X., Wang, Y., Huang, S., Wang, R., Chen, C., 2024.

Correcting Missingness in Passively-generated Mobile Data using
Multi-task Gaussian Processes. Under review.

▶ Ugurel, E., Huang, S., Chen, C., 2024. Uncovering physics-regularized
data generation processes for individual human mobility: A multi-task
Gaussian process approach based on multiple kernel learning. Under
review.
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Background

▶ Physical systems tend to have differential equations or other
governing equations that describe the dynamics of the system.

▶ The Latent Force Model (Alvarez et al., 2013; Álvarez et al.,
2009) has been successful in enforcing physical laws in a GP
framework.
▶ However, the LFM formulation is based on kernel convolution,

and obtaining an analytical kernel after this process restricts
usage to simple/smooth kernels (i.e., the Gaussian kernel).

▶ This could hinder our ability to incorporate physical knowledge
into kernels that are more intricate but extremely adaptable,
such as those developed through our greedy learning algorithm.

▶ Inspired by Lasserre et al. (2006) and Wang et al. (2022), we
propose a hybrid conditional-generative model that acts as a
soft regularizer for the existing multi-task GP framework.
▶ This model does not restrict the class of kernels that can be

used, making it suitable for our approach.
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Impact of Kernel Choice
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Pgen inference
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Pgen inference
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Performance

T, P, and PT denote the temporal-only, physical-only, and
physics-regularized GP models, respectively. The MSLL plot is
log-scaled in the y-axis.
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Takeaways

▶ Different types of trips necessitate inherently different GP
models

▶ GPs generalize better than traditional time-series
extrapolation models

▶ The impact of kernel choice on mobility metrics derived from
synthetic data is non-negligible

▶ Physics-regularization not only reduces model bias but also
improves uncertainty estimates associated with the predicted
locations.
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Connect with me

▶ Email: ekinokos2 [at] gmail [dot] com
▶ Website: ekinugurel.github.io
▶ LinkedIn: linkedin.com/in/ekin-ugurel
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